Description: A syllogism inference. (Contributed by NM, 21-Apr-1994) (Proof shortened by Wolf Lammen, 22-Nov-2012)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sylan2.1 | ⊢ ( 𝜑 → 𝜒 ) | |
sylan2.2 | ⊢ ( ( 𝜓 ∧ 𝜒 ) → 𝜃 ) | ||
Assertion | sylan2 | ⊢ ( ( 𝜓 ∧ 𝜑 ) → 𝜃 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylan2.1 | ⊢ ( 𝜑 → 𝜒 ) | |
2 | sylan2.2 | ⊢ ( ( 𝜓 ∧ 𝜒 ) → 𝜃 ) | |
3 | 1 | adantl | ⊢ ( ( 𝜓 ∧ 𝜑 ) → 𝜒 ) |
4 | 3 2 | syldan | ⊢ ( ( 𝜓 ∧ 𝜑 ) → 𝜃 ) |