Description: A syllogism inference. (Contributed by NM, 21-Apr-1994)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sylan2b.1 | ⊢ ( 𝜑 ↔ 𝜒 ) | |
sylan2b.2 | ⊢ ( ( 𝜓 ∧ 𝜒 ) → 𝜃 ) | ||
Assertion | sylan2b | ⊢ ( ( 𝜓 ∧ 𝜑 ) → 𝜃 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylan2b.1 | ⊢ ( 𝜑 ↔ 𝜒 ) | |
2 | sylan2b.2 | ⊢ ( ( 𝜓 ∧ 𝜒 ) → 𝜃 ) | |
3 | 1 | biimpi | ⊢ ( 𝜑 → 𝜒 ) |
4 | 3 2 | sylan2 | ⊢ ( ( 𝜓 ∧ 𝜑 ) → 𝜃 ) |