Metamath Proof Explorer


Theorem sylan2b

Description: A syllogism inference. (Contributed by NM, 21-Apr-1994)

Ref Expression
Hypotheses sylan2b.1 ( 𝜑𝜒 )
sylan2b.2 ( ( 𝜓𝜒 ) → 𝜃 )
Assertion sylan2b ( ( 𝜓𝜑 ) → 𝜃 )

Proof

Step Hyp Ref Expression
1 sylan2b.1 ( 𝜑𝜒 )
2 sylan2b.2 ( ( 𝜓𝜒 ) → 𝜃 )
3 1 biimpi ( 𝜑𝜒 )
4 3 2 sylan2 ( ( 𝜓𝜑 ) → 𝜃 )