Description: A syllogism inference. (Contributed by NM, 21-Apr-1994)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sylan2b.1 | |- ( ph <-> ch ) |
|
sylan2b.2 | |- ( ( ps /\ ch ) -> th ) |
||
Assertion | sylan2b | |- ( ( ps /\ ph ) -> th ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylan2b.1 | |- ( ph <-> ch ) |
|
2 | sylan2b.2 | |- ( ( ps /\ ch ) -> th ) |
|
3 | 1 | biimpi | |- ( ph -> ch ) |
4 | 3 2 | sylan2 | |- ( ( ps /\ ph ) -> th ) |