Metamath Proof Explorer


Theorem sylan2b

Description: A syllogism inference. (Contributed by NM, 21-Apr-1994)

Ref Expression
Hypotheses sylan2b.1
|- ( ph <-> ch )
sylan2b.2
|- ( ( ps /\ ch ) -> th )
Assertion sylan2b
|- ( ( ps /\ ph ) -> th )

Proof

Step Hyp Ref Expression
1 sylan2b.1
 |-  ( ph <-> ch )
2 sylan2b.2
 |-  ( ( ps /\ ch ) -> th )
3 1 biimpi
 |-  ( ph -> ch )
4 3 2 sylan2
 |-  ( ( ps /\ ph ) -> th )