Metamath Proof Explorer


Theorem sylan2br

Description: A syllogism inference. (Contributed by NM, 21-Apr-1994)

Ref Expression
Hypotheses sylan2br.1
|- ( ch <-> ph )
sylan2br.2
|- ( ( ps /\ ch ) -> th )
Assertion sylan2br
|- ( ( ps /\ ph ) -> th )

Proof

Step Hyp Ref Expression
1 sylan2br.1
 |-  ( ch <-> ph )
2 sylan2br.2
 |-  ( ( ps /\ ch ) -> th )
3 1 biimpri
 |-  ( ph -> ch )
4 3 2 sylan2
 |-  ( ( ps /\ ph ) -> th )