Metamath Proof Explorer


Theorem syl2an

Description: A double syllogism inference. For an implication-only version, see syl2im . (Contributed by NM, 31-Jan-1997)

Ref Expression
Hypotheses syl2an.1 φψ
syl2an.2 τχ
syl2an.3 ψχθ
Assertion syl2an φτθ

Proof

Step Hyp Ref Expression
1 syl2an.1 φψ
2 syl2an.2 τχ
3 syl2an.3 ψχθ
4 1 3 sylan φχθ
5 2 4 sylan2 φτθ