Metamath Proof Explorer


Theorem syl2im

Description: Replace two antecedents. Implication-only version of syl2an . (Contributed by Wolf Lammen, 14-May-2013)

Ref Expression
Hypotheses syl2im.1 φ ψ
syl2im.2 χ θ
syl2im.3 ψ θ τ
Assertion syl2im φ χ τ

Proof

Step Hyp Ref Expression
1 syl2im.1 φ ψ
2 syl2im.2 χ θ
3 syl2im.3 ψ θ τ
4 2 3 syl5 ψ χ τ
5 1 4 syl φ χ τ