Metamath Proof Explorer
Description: Replace two antecedents. Implication-only version of syl2an .
(Contributed by Wolf Lammen, 14-May-2013)
|
|
Ref |
Expression |
|
Hypotheses |
syl2im.1 |
⊢ ( 𝜑 → 𝜓 ) |
|
|
syl2im.2 |
⊢ ( 𝜒 → 𝜃 ) |
|
|
syl2im.3 |
⊢ ( 𝜓 → ( 𝜃 → 𝜏 ) ) |
|
Assertion |
syl2im |
⊢ ( 𝜑 → ( 𝜒 → 𝜏 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
syl2im.1 |
⊢ ( 𝜑 → 𝜓 ) |
2 |
|
syl2im.2 |
⊢ ( 𝜒 → 𝜃 ) |
3 |
|
syl2im.3 |
⊢ ( 𝜓 → ( 𝜃 → 𝜏 ) ) |
4 |
2 3
|
syl5 |
⊢ ( 𝜓 → ( 𝜒 → 𝜏 ) ) |
5 |
1 4
|
syl |
⊢ ( 𝜑 → ( 𝜒 → 𝜏 ) ) |