Metamath Proof Explorer


Theorem syl2im

Description: Replace two antecedents. Implication-only version of syl2an . (Contributed by Wolf Lammen, 14-May-2013)

Ref Expression
Hypotheses syl2im.1 ( 𝜑𝜓 )
syl2im.2 ( 𝜒𝜃 )
syl2im.3 ( 𝜓 → ( 𝜃𝜏 ) )
Assertion syl2im ( 𝜑 → ( 𝜒𝜏 ) )

Proof

Step Hyp Ref Expression
1 syl2im.1 ( 𝜑𝜓 )
2 syl2im.2 ( 𝜒𝜃 )
3 syl2im.3 ( 𝜓 → ( 𝜃𝜏 ) )
4 2 3 syl5 ( 𝜓 → ( 𝜒𝜏 ) )
5 1 4 syl ( 𝜑 → ( 𝜒𝜏 ) )