Description: A double syllogism inference. For an implication-only version, see syl2imc . (Contributed by NM, 17-Sep-2013)
Ref | Expression | ||
---|---|---|---|
Hypotheses | syl2an.1 | |- ( ph -> ps ) |
|
syl2an.2 | |- ( ta -> ch ) |
||
syl2an.3 | |- ( ( ps /\ ch ) -> th ) |
||
Assertion | syl2anr | |- ( ( ta /\ ph ) -> th ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl2an.1 | |- ( ph -> ps ) |
|
2 | syl2an.2 | |- ( ta -> ch ) |
|
3 | syl2an.3 | |- ( ( ps /\ ch ) -> th ) |
|
4 | 1 2 3 | syl2an | |- ( ( ph /\ ta ) -> th ) |
5 | 4 | ancoms | |- ( ( ta /\ ph ) -> th ) |