Metamath Proof Explorer


Theorem syl2anr

Description: A double syllogism inference. For an implication-only version, see syl2imc . (Contributed by NM, 17-Sep-2013)

Ref Expression
Hypotheses syl2an.1
|- ( ph -> ps )
syl2an.2
|- ( ta -> ch )
syl2an.3
|- ( ( ps /\ ch ) -> th )
Assertion syl2anr
|- ( ( ta /\ ph ) -> th )

Proof

Step Hyp Ref Expression
1 syl2an.1
 |-  ( ph -> ps )
2 syl2an.2
 |-  ( ta -> ch )
3 syl2an.3
 |-  ( ( ps /\ ch ) -> th )
4 1 2 3 syl2an
 |-  ( ( ph /\ ta ) -> th )
5 4 ancoms
 |-  ( ( ta /\ ph ) -> th )