Metamath Proof Explorer


Theorem sylnibr

Description: A mixed syllogism inference from an implication and a biconditional. Useful for substituting a consequent with a definition. (Contributed by Wolf Lammen, 16-Dec-2013)

Ref Expression
Hypotheses sylnibr.1 φ¬ψ
sylnibr.2 χψ
Assertion sylnibr φ¬χ

Proof

Step Hyp Ref Expression
1 sylnibr.1 φ¬ψ
2 sylnibr.2 χψ
3 2 bicomi ψχ
4 1 3 sylnib φ¬χ