Metamath Proof Explorer


Theorem nanbi1d

Description: Introduce a right anti-conjunct to both sides of a logical equivalence. (Contributed by SF, 2-Jan-2018)

Ref Expression
Hypothesis nanbid.1 φψχ
Assertion nanbi1d φψθχθ

Proof

Step Hyp Ref Expression
1 nanbid.1 φψχ
2 nanbi1 ψχψθχθ
3 1 2 syl φψθχθ