Metamath Proof Explorer


Theorem nanbi1d

Description: Introduce a right anti-conjunct to both sides of a logical equivalence. (Contributed by SF, 2-Jan-2018)

Ref Expression
Hypothesis nanbid.1 ( 𝜑 → ( 𝜓𝜒 ) )
Assertion nanbi1d ( 𝜑 → ( ( 𝜓𝜃 ) ↔ ( 𝜒𝜃 ) ) )

Proof

Step Hyp Ref Expression
1 nanbid.1 ( 𝜑 → ( 𝜓𝜒 ) )
2 nanbi1 ( ( 𝜓𝜒 ) → ( ( 𝜓𝜃 ) ↔ ( 𝜒𝜃 ) ) )
3 1 2 syl ( 𝜑 → ( ( 𝜓𝜃 ) ↔ ( 𝜒𝜃 ) ) )