Metamath Proof Explorer


Theorem nanbi2d

Description: Introduce a left anti-conjunct to both sides of a logical equivalence. (Contributed by SF, 2-Jan-2018)

Ref Expression
Hypothesis nanbid.1 ( 𝜑 → ( 𝜓𝜒 ) )
Assertion nanbi2d ( 𝜑 → ( ( 𝜃𝜓 ) ↔ ( 𝜃𝜒 ) ) )

Proof

Step Hyp Ref Expression
1 nanbid.1 ( 𝜑 → ( 𝜓𝜒 ) )
2 nanbi2 ( ( 𝜓𝜒 ) → ( ( 𝜃𝜓 ) ↔ ( 𝜃𝜒 ) ) )
3 1 2 syl ( 𝜑 → ( ( 𝜃𝜓 ) ↔ ( 𝜃𝜒 ) ) )