Metamath Proof Explorer


Theorem 3ecase

Description: Inference for elimination by cases. (Contributed by NM, 13-Jul-2005)

Ref Expression
Hypotheses 3ecase.1 ¬φθ
3ecase.2 ¬ψθ
3ecase.3 ¬χθ
3ecase.4 φψχθ
Assertion 3ecase θ

Proof

Step Hyp Ref Expression
1 3ecase.1 ¬φθ
2 3ecase.2 ¬ψθ
3 3ecase.3 ¬χθ
4 3ecase.4 φψχθ
5 4 3exp φψχθ
6 1 2a1d ¬φψχθ
7 5 6 pm2.61i ψχθ
8 7 2 3 pm2.61nii θ