Metamath Proof Explorer


Theorem 3com23

Description: Commutation in antecedent. Swap 2nd and 3rd. (Contributed by NM, 28-Jan-1996) (Proof shortened by Wolf Lammen, 9-Apr-2022)

Ref Expression
Hypothesis 3exp.1 φψχθ
Assertion 3com23 φχψθ

Proof

Step Hyp Ref Expression
1 3exp.1 φψχθ
2 1 3comr χφψθ
3 2 3com12 φχψθ