Description: Commutation in antecedent. Swap 2nd and 3rd. (Contributed by NM, 28-Jan-1996) (Proof shortened by Wolf Lammen, 9-Apr-2022)
Ref | Expression | ||
---|---|---|---|
Hypothesis | 3exp.1 | |- ( ( ph /\ ps /\ ch ) -> th ) |
|
Assertion | 3com23 | |- ( ( ph /\ ch /\ ps ) -> th ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3exp.1 | |- ( ( ph /\ ps /\ ch ) -> th ) |
|
2 | 1 | 3comr | |- ( ( ch /\ ph /\ ps ) -> th ) |
3 | 2 | 3com12 | |- ( ( ph /\ ch /\ ps ) -> th ) |