Metamath Proof Explorer


Theorem 3coml

Description: Commutation in antecedent. Rotate left. (Contributed by NM, 28-Jan-1996)

Ref Expression
Hypothesis 3exp.1
|- ( ( ph /\ ps /\ ch ) -> th )
Assertion 3coml
|- ( ( ps /\ ch /\ ph ) -> th )

Proof

Step Hyp Ref Expression
1 3exp.1
 |-  ( ( ph /\ ps /\ ch ) -> th )
2 1 3com23
 |-  ( ( ph /\ ch /\ ps ) -> th )
3 2 3com13
 |-  ( ( ps /\ ch /\ ph ) -> th )