Description: Commutation in antecedent. Rotate left. (Contributed by NM, 28-Jan-1996)
Ref | Expression | ||
---|---|---|---|
Hypothesis | 3exp.1 | ⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → 𝜃 ) | |
Assertion | 3coml | ⊢ ( ( 𝜓 ∧ 𝜒 ∧ 𝜑 ) → 𝜃 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3exp.1 | ⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → 𝜃 ) | |
2 | 1 | 3com23 | ⊢ ( ( 𝜑 ∧ 𝜒 ∧ 𝜓 ) → 𝜃 ) |
3 | 2 | 3com13 | ⊢ ( ( 𝜓 ∧ 𝜒 ∧ 𝜑 ) → 𝜃 ) |