Metamath Proof Explorer


Theorem pm2.61ddan

Description: Elimination of two antecedents. (Contributed by NM, 9-Jul-2013)

Ref Expression
Hypotheses pm2.61ddan.1 φ ψ θ
pm2.61ddan.2 φ χ θ
pm2.61ddan.3 φ ¬ ψ ¬ χ θ
Assertion pm2.61ddan φ θ

Proof

Step Hyp Ref Expression
1 pm2.61ddan.1 φ ψ θ
2 pm2.61ddan.2 φ χ θ
3 pm2.61ddan.3 φ ¬ ψ ¬ χ θ
4 2 adantlr φ ¬ ψ χ θ
5 3 anassrs φ ¬ ψ ¬ χ θ
6 4 5 pm2.61dan φ ¬ ψ θ
7 1 6 pm2.61dan φ θ