Metamath Proof Explorer


Theorem sylan9r

Description: Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 14-May-1993)

Ref Expression
Hypotheses sylan9r.1 φψχ
sylan9r.2 θχτ
Assertion sylan9r θφψτ

Proof

Step Hyp Ref Expression
1 sylan9r.1 φψχ
2 sylan9r.2 θχτ
3 1 2 syl9r θφψτ
4 3 imp θφψτ