Metamath Proof Explorer
		
		
		
		Description:  Nested syllogism inference conjoining dissimilar antecedents.
       (Contributed by NM, 14-May-1993)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | sylan9r.1 |  | 
					
						|  |  | sylan9r.2 |  | 
				
					|  | Assertion | sylan9r |  | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sylan9r.1 |  | 
						
							| 2 |  | sylan9r.2 |  | 
						
							| 3 | 1 2 | syl9r |  | 
						
							| 4 | 3 | imp |  |