Metamath Proof Explorer


Theorem adantl6r

Description: Deduction adding 1 conjunct to antecedent. (Contributed by Thierry Arnoux, 11-Feb-2018)

Ref Expression
Hypothesis adantl6r.1 φηζσρμλκ
Assertion adantl6r φτηζσρμλκ

Proof

Step Hyp Ref Expression
1 adantl6r.1 φηζσρμλκ
2 1 ex φηζσρμλκ
3 2 adantl5r φτηζσρμλκ
4 3 imp φτηζσρμλκ