Description: Deduction adding 1 conjunct to antecedent. (Contributed by Thierry Arnoux, 11-Feb-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | adantl6r.1 | |- ( ( ( ( ( ( ( ph /\ et ) /\ ze ) /\ si ) /\ rh ) /\ mu ) /\ la ) -> ka ) |
|
| Assertion | adantl6r | |- ( ( ( ( ( ( ( ( ph /\ ta ) /\ et ) /\ ze ) /\ si ) /\ rh ) /\ mu ) /\ la ) -> ka ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | adantl6r.1 | |- ( ( ( ( ( ( ( ph /\ et ) /\ ze ) /\ si ) /\ rh ) /\ mu ) /\ la ) -> ka ) |
|
| 2 | 1 | ex | |- ( ( ( ( ( ( ph /\ et ) /\ ze ) /\ si ) /\ rh ) /\ mu ) -> ( la -> ka ) ) |
| 3 | 2 | adantl5r | |- ( ( ( ( ( ( ( ph /\ ta ) /\ et ) /\ ze ) /\ si ) /\ rh ) /\ mu ) -> ( la -> ka ) ) |
| 4 | 3 | imp | |- ( ( ( ( ( ( ( ( ph /\ ta ) /\ et ) /\ ze ) /\ si ) /\ rh ) /\ mu ) /\ la ) -> ka ) |