Metamath Proof Explorer


Theorem simpr2l

Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012) (Proof shortened by Wolf Lammen, 24-Jun-2022)

Ref Expression
Assertion simpr2l τχφψθφ

Proof

Step Hyp Ref Expression
1 simprl τφψφ
2 1 3ad2antr2 τχφψθφ