Metamath Proof Explorer


Theorem ad3antrrr

Description: Deduction adding three conjuncts to antecedent. (Contributed by NM, 28-Jul-2012)

Ref Expression
Hypothesis ad2ant.1 φψ
Assertion ad3antrrr φχθτψ

Proof

Step Hyp Ref Expression
1 ad2ant.1 φψ
2 1 adantr φχψ
3 2 ad2antrr φχθτψ