Metamath Proof Explorer


Theorem ad3antrrr

Description: Deduction adding three conjuncts to antecedent. (Contributed by NM, 28-Jul-2012)

Ref Expression
Hypothesis ad2ant.1 ( 𝜑𝜓 )
Assertion ad3antrrr ( ( ( ( 𝜑𝜒 ) ∧ 𝜃 ) ∧ 𝜏 ) → 𝜓 )

Proof

Step Hyp Ref Expression
1 ad2ant.1 ( 𝜑𝜓 )
2 1 adantr ( ( 𝜑𝜒 ) → 𝜓 )
3 2 ad2antrr ( ( ( ( 𝜑𝜒 ) ∧ 𝜃 ) ∧ 𝜏 ) → 𝜓 )