Metamath Proof Explorer


Theorem 3bitr3d

Description: Deduction from transitivity of biconditional. Useful for converting conditional definitions in a formula. (Contributed by NM, 24-Apr-1996)

Ref Expression
Hypotheses 3bitr3d.1 φ ψ χ
3bitr3d.2 φ ψ θ
3bitr3d.3 φ χ τ
Assertion 3bitr3d φ θ τ

Proof

Step Hyp Ref Expression
1 3bitr3d.1 φ ψ χ
2 3bitr3d.2 φ ψ θ
3 3bitr3d.3 φ χ τ
4 2 1 bitr3d φ θ χ
5 4 3 bitrd φ θ τ