Metamath Proof Explorer


Theorem 3bitr3d

Description: Deduction from transitivity of biconditional. Useful for converting conditional definitions in a formula. (Contributed by NM, 24-Apr-1996)

Ref Expression
Hypotheses 3bitr3d.1 φψχ
3bitr3d.2 φψθ
3bitr3d.3 φχτ
Assertion 3bitr3d φθτ

Proof

Step Hyp Ref Expression
1 3bitr3d.1 φψχ
2 3bitr3d.2 φψθ
3 3bitr3d.3 φχτ
4 2 1 bitr3d φθχ
5 4 3 bitrd φθτ