Database
CLASSICAL FIRST-ORDER LOGIC WITH EQUALITY
Propositional calculus
Logical equivalence
3bitr3d
Metamath Proof Explorer
Description: Deduction from transitivity of biconditional. Useful for converting
conditional definitions in a formula. (Contributed by NM , 24-Apr-1996)
Ref
Expression
Hypotheses
3bitr3d.1
⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) )
3bitr3d.2
⊢ ( 𝜑 → ( 𝜓 ↔ 𝜃 ) )
3bitr3d.3
⊢ ( 𝜑 → ( 𝜒 ↔ 𝜏 ) )
Assertion
3bitr3d
⊢ ( 𝜑 → ( 𝜃 ↔ 𝜏 ) )
Proof
Step
Hyp
Ref
Expression
1
3bitr3d.1
⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) )
2
3bitr3d.2
⊢ ( 𝜑 → ( 𝜓 ↔ 𝜃 ) )
3
3bitr3d.3
⊢ ( 𝜑 → ( 𝜒 ↔ 𝜏 ) )
4
2 1
bitr3d
⊢ ( 𝜑 → ( 𝜃 ↔ 𝜒 ) )
5
4 3
bitrd
⊢ ( 𝜑 → ( 𝜃 ↔ 𝜏 ) )