Metamath Proof Explorer


Theorem an4

Description: Rearrangement of 4 conjuncts. (Contributed by NM, 10-Jul-1994)

Ref Expression
Assertion an4 φψχθφχψθ

Proof

Step Hyp Ref Expression
1 anass φψχθφψχθ
2 an12 ψχθχψθ
3 2 bianass φψχθφχψθ
4 1 3 bitri φψχθφχψθ