Metamath Proof Explorer


Theorem anass

Description: Associative law for conjunction. Theorem *4.32 of WhiteheadRussell p. 118. (Contributed by NM, 21-Jun-1993) (Proof shortened by Wolf Lammen, 24-Nov-2012)

Ref Expression
Assertion anass φ ψ χ φ ψ χ

Proof

Step Hyp Ref Expression
1 id φ ψ χ φ ψ χ
2 1 anassrs φ ψ χ φ ψ χ
3 id φ ψ χ φ ψ χ
4 3 anasss φ ψ χ φ ψ χ
5 2 4 impbii φ ψ χ φ ψ χ