Description: Associative law for conjunction. Theorem *4.32 of WhiteheadRussell p. 118. (Contributed by NM, 21-Jun-1993) (Proof shortened by Wolf Lammen, 24-Nov-2012)
Ref | Expression | ||
---|---|---|---|
Assertion | anass | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) ↔ ( 𝜑 ∧ ( 𝜓 ∧ 𝜒 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id | ⊢ ( ( 𝜑 ∧ ( 𝜓 ∧ 𝜒 ) ) → ( 𝜑 ∧ ( 𝜓 ∧ 𝜒 ) ) ) | |
2 | 1 | anassrs | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) → ( 𝜑 ∧ ( 𝜓 ∧ 𝜒 ) ) ) |
3 | id | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) → ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) ) | |
4 | 3 | anasss | ⊢ ( ( 𝜑 ∧ ( 𝜓 ∧ 𝜒 ) ) → ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) ) |
5 | 2 4 | impbii | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) ↔ ( 𝜑 ∧ ( 𝜓 ∧ 𝜒 ) ) ) |