Metamath Proof Explorer


Theorem anass

Description: Associative law for conjunction. Theorem *4.32 of WhiteheadRussell p. 118. (Contributed by NM, 21-Jun-1993) (Proof shortened by Wolf Lammen, 24-Nov-2012)

Ref Expression
Assertion anass ( ( ( 𝜑𝜓 ) ∧ 𝜒 ) ↔ ( 𝜑 ∧ ( 𝜓𝜒 ) ) )

Proof

Step Hyp Ref Expression
1 id ( ( 𝜑 ∧ ( 𝜓𝜒 ) ) → ( 𝜑 ∧ ( 𝜓𝜒 ) ) )
2 1 anassrs ( ( ( 𝜑𝜓 ) ∧ 𝜒 ) → ( 𝜑 ∧ ( 𝜓𝜒 ) ) )
3 id ( ( ( 𝜑𝜓 ) ∧ 𝜒 ) → ( ( 𝜑𝜓 ) ∧ 𝜒 ) )
4 3 anasss ( ( 𝜑 ∧ ( 𝜓𝜒 ) ) → ( ( 𝜑𝜓 ) ∧ 𝜒 ) )
5 2 4 impbii ( ( ( 𝜑𝜓 ) ∧ 𝜒 ) ↔ ( 𝜑 ∧ ( 𝜓𝜒 ) ) )