Metamath Proof Explorer


Theorem anass

Description: Associative law for conjunction. Theorem *4.32 of WhiteheadRussell p. 118. (Contributed by NM, 21-Jun-1993) (Proof shortened by Wolf Lammen, 24-Nov-2012)

Ref Expression
Assertion anass
|- ( ( ( ph /\ ps ) /\ ch ) <-> ( ph /\ ( ps /\ ch ) ) )

Proof

Step Hyp Ref Expression
1 id
 |-  ( ( ph /\ ( ps /\ ch ) ) -> ( ph /\ ( ps /\ ch ) ) )
2 1 anassrs
 |-  ( ( ( ph /\ ps ) /\ ch ) -> ( ph /\ ( ps /\ ch ) ) )
3 id
 |-  ( ( ( ph /\ ps ) /\ ch ) -> ( ( ph /\ ps ) /\ ch ) )
4 3 anasss
 |-  ( ( ph /\ ( ps /\ ch ) ) -> ( ( ph /\ ps ) /\ ch ) )
5 2 4 impbii
 |-  ( ( ( ph /\ ps ) /\ ch ) <-> ( ph /\ ( ps /\ ch ) ) )