Description: Associative law for conjunction. Theorem *4.32 of WhiteheadRussell p. 118. (Contributed by NM, 21-Jun-1993) (Proof shortened by Wolf Lammen, 24-Nov-2012)
Ref | Expression | ||
---|---|---|---|
Assertion | anass | |- ( ( ( ph /\ ps ) /\ ch ) <-> ( ph /\ ( ps /\ ch ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id | |- ( ( ph /\ ( ps /\ ch ) ) -> ( ph /\ ( ps /\ ch ) ) ) |
|
2 | 1 | anassrs | |- ( ( ( ph /\ ps ) /\ ch ) -> ( ph /\ ( ps /\ ch ) ) ) |
3 | id | |- ( ( ( ph /\ ps ) /\ ch ) -> ( ( ph /\ ps ) /\ ch ) ) |
|
4 | 3 | anasss | |- ( ( ph /\ ( ps /\ ch ) ) -> ( ( ph /\ ps ) /\ ch ) ) |
5 | 2 4 | impbii | |- ( ( ( ph /\ ps ) /\ ch ) <-> ( ph /\ ( ps /\ ch ) ) ) |