Metamath Proof Explorer


Theorem noror

Description: \/ is expressible via -\/ . (Contributed by Remi, 26-Oct-2023) (Proof shortened by Wolf Lammen, 8-Dec-2023)

Ref Expression
Assertion noror φ ψ φ ψ φ ψ

Proof

Step Hyp Ref Expression
1 df-nor φ ψ ¬ φ ψ
2 1 con2bii φ ψ ¬ φ ψ
3 nornot ¬ φ ψ φ ψ φ ψ
4 2 3 bitri φ ψ φ ψ φ ψ