Metamath Proof Explorer


Theorem nornot

Description: -. is expressible via -\/ . (Contributed by Remi, 25-Oct-2023) (Proof shortened by Wolf Lammen, 8-Dec-2023)

Ref Expression
Assertion nornot ¬φφφ

Proof

Step Hyp Ref Expression
1 df-nor φφ¬φφ
2 oridm φφφ
3 1 2 xchbinx φφ¬φ
4 3 bicomi ¬φφφ