Metamath Proof Explorer


Theorem nornot

Description: -. is expressible via -\/ . (Contributed by Remi, 25-Oct-2023) (Proof shortened by Wolf Lammen, 8-Dec-2023)

Ref Expression
Assertion nornot ( ¬ 𝜑 ↔ ( 𝜑 𝜑 ) )

Proof

Step Hyp Ref Expression
1 df-nor ( ( 𝜑 𝜑 ) ↔ ¬ ( 𝜑𝜑 ) )
2 oridm ( ( 𝜑𝜑 ) ↔ 𝜑 )
3 1 2 xchbinx ( ( 𝜑 𝜑 ) ↔ ¬ 𝜑 )
4 3 bicomi ( ¬ 𝜑 ↔ ( 𝜑 𝜑 ) )