Description: -. is expressible via -\/ . (Contributed by Remi, 25-Oct-2023) (Proof shortened by Wolf Lammen, 8-Dec-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | nornot | |- ( -. ph <-> ( ph -\/ ph ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nor | |- ( ( ph -\/ ph ) <-> -. ( ph \/ ph ) ) |
|
2 | oridm | |- ( ( ph \/ ph ) <-> ph ) |
|
3 | 1 2 | xchbinx | |- ( ( ph -\/ ph ) <-> -. ph ) |
4 | 3 | bicomi | |- ( -. ph <-> ( ph -\/ ph ) ) |