Description: -. is expressible via -\/ . (Contributed by Remi, 25-Oct-2023) (Proof shortened by Wolf Lammen, 8-Dec-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nornot | |- ( -. ph <-> ( ph -\/ ph ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nor | |- ( ( ph -\/ ph ) <-> -. ( ph \/ ph ) ) |
|
| 2 | oridm | |- ( ( ph \/ ph ) <-> ph ) |
|
| 3 | 1 2 | xchbinx | |- ( ( ph -\/ ph ) <-> -. ph ) |
| 4 | 3 | bicomi | |- ( -. ph <-> ( ph -\/ ph ) ) |