Metamath Proof Explorer
Description: Replacement of a subexpression by an equivalent one. (Contributed by Wolf Lammen, 27-Sep-2014)
|
|
Ref |
Expression |
|
Hypotheses |
xchbinx.1 |
|- ( ph <-> -. ps ) |
|
|
xchbinx.2 |
|- ( ps <-> ch ) |
|
Assertion |
xchbinx |
|- ( ph <-> -. ch ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
xchbinx.1 |
|- ( ph <-> -. ps ) |
2 |
|
xchbinx.2 |
|- ( ps <-> ch ) |
3 |
2
|
notbii |
|- ( -. ps <-> -. ch ) |
4 |
1 3
|
bitri |
|- ( ph <-> -. ch ) |