Metamath Proof Explorer


Theorem xchbinx

Description: Replacement of a subexpression by an equivalent one. (Contributed by Wolf Lammen, 27-Sep-2014)

Ref Expression
Hypotheses xchbinx.1
|- ( ph <-> -. ps )
xchbinx.2
|- ( ps <-> ch )
Assertion xchbinx
|- ( ph <-> -. ch )

Proof

Step Hyp Ref Expression
1 xchbinx.1
 |-  ( ph <-> -. ps )
2 xchbinx.2
 |-  ( ps <-> ch )
3 2 notbii
 |-  ( -. ps <-> -. ch )
4 1 3 bitri
 |-  ( ph <-> -. ch )