Metamath Proof Explorer
Description: Replacement of a subexpression by an equivalent one. (Contributed by Wolf Lammen, 27-Sep-2014)
|
|
Ref |
Expression |
|
Hypotheses |
xchbinxr.1 |
|- ( ph <-> -. ps ) |
|
|
xchbinxr.2 |
|- ( ch <-> ps ) |
|
Assertion |
xchbinxr |
|- ( ph <-> -. ch ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
xchbinxr.1 |
|- ( ph <-> -. ps ) |
2 |
|
xchbinxr.2 |
|- ( ch <-> ps ) |
3 |
2
|
bicomi |
|- ( ps <-> ch ) |
4 |
1 3
|
xchbinx |
|- ( ph <-> -. ch ) |