Metamath Proof Explorer


Theorem xchbinxr

Description: Replacement of a subexpression by an equivalent one. (Contributed by Wolf Lammen, 27-Sep-2014)

Ref Expression
Hypotheses xchbinxr.1
|- ( ph <-> -. ps )
xchbinxr.2
|- ( ch <-> ps )
Assertion xchbinxr
|- ( ph <-> -. ch )

Proof

Step Hyp Ref Expression
1 xchbinxr.1
 |-  ( ph <-> -. ps )
2 xchbinxr.2
 |-  ( ch <-> ps )
3 2 bicomi
 |-  ( ps <-> ch )
4 1 3 xchbinx
 |-  ( ph <-> -. ch )