Metamath Proof Explorer


Theorem bicomi

Description: Inference from commutative law for logical equivalence. (Contributed by NM, 3-Jan-1993)

Ref Expression
Hypothesis bicomi.1
|- ( ph <-> ps )
Assertion bicomi
|- ( ps <-> ph )

Proof

Step Hyp Ref Expression
1 bicomi.1
 |-  ( ph <-> ps )
2 bicom1
 |-  ( ( ph <-> ps ) -> ( ps <-> ph ) )
3 1 2 ax-mp
 |-  ( ps <-> ph )