Metamath Proof Explorer


Theorem xchbinxr

Description: Replacement of a subexpression by an equivalent one. (Contributed by Wolf Lammen, 27-Sep-2014)

Ref Expression
Hypotheses xchbinxr.1 ( 𝜑 ↔ ¬ 𝜓 )
xchbinxr.2 ( 𝜒𝜓 )
Assertion xchbinxr ( 𝜑 ↔ ¬ 𝜒 )

Proof

Step Hyp Ref Expression
1 xchbinxr.1 ( 𝜑 ↔ ¬ 𝜓 )
2 xchbinxr.2 ( 𝜒𝜓 )
3 2 bicomi ( 𝜓𝜒 )
4 1 3 xchbinx ( 𝜑 ↔ ¬ 𝜒 )