Description: /\ is expressible via -\/ . (Contributed by Remi, 26-Oct-2023) (Proof shortened by Wolf Lammen, 8-Dec-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | noran | |- ( ( ph /\ ps ) <-> ( ( ph -\/ ph ) -\/ ( ps -\/ ps ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | anor | |- ( ( ph /\ ps ) <-> -. ( -. ph \/ -. ps ) ) | |
| 2 | nornot | |- ( -. ph <-> ( ph -\/ ph ) ) | |
| 3 | nornot | |- ( -. ps <-> ( ps -\/ ps ) ) | |
| 4 | 2 3 | orbi12i | |- ( ( -. ph \/ -. ps ) <-> ( ( ph -\/ ph ) \/ ( ps -\/ ps ) ) ) | 
| 5 | 1 4 | xchbinx | |- ( ( ph /\ ps ) <-> -. ( ( ph -\/ ph ) \/ ( ps -\/ ps ) ) ) | 
| 6 | df-nor | |- ( ( ( ph -\/ ph ) -\/ ( ps -\/ ps ) ) <-> -. ( ( ph -\/ ph ) \/ ( ps -\/ ps ) ) ) | |
| 7 | 5 6 | bitr4i | |- ( ( ph /\ ps ) <-> ( ( ph -\/ ph ) -\/ ( ps -\/ ps ) ) ) |