Metamath Proof Explorer


Theorem noran

Description: /\ is expressible via -\/ . (Contributed by Remi, 26-Oct-2023) (Proof shortened by Wolf Lammen, 8-Dec-2023)

Ref Expression
Assertion noran
|- ( ( ph /\ ps ) <-> ( ( ph -\/ ph ) -\/ ( ps -\/ ps ) ) )

Proof

Step Hyp Ref Expression
1 anor
 |-  ( ( ph /\ ps ) <-> -. ( -. ph \/ -. ps ) )
2 nornot
 |-  ( -. ph <-> ( ph -\/ ph ) )
3 nornot
 |-  ( -. ps <-> ( ps -\/ ps ) )
4 2 3 orbi12i
 |-  ( ( -. ph \/ -. ps ) <-> ( ( ph -\/ ph ) \/ ( ps -\/ ps ) ) )
5 1 4 xchbinx
 |-  ( ( ph /\ ps ) <-> -. ( ( ph -\/ ph ) \/ ( ps -\/ ps ) ) )
6 df-nor
 |-  ( ( ( ph -\/ ph ) -\/ ( ps -\/ ps ) ) <-> -. ( ( ph -\/ ph ) \/ ( ps -\/ ps ) ) )
7 5 6 bitr4i
 |-  ( ( ph /\ ps ) <-> ( ( ph -\/ ph ) -\/ ( ps -\/ ps ) ) )