Description: /\ is expressible via -\/ . (Contributed by Remi, 26-Oct-2023) (Proof shortened by Wolf Lammen, 8-Dec-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | noran | |- ( ( ph /\ ps ) <-> ( ( ph -\/ ph ) -\/ ( ps -\/ ps ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anor | |- ( ( ph /\ ps ) <-> -. ( -. ph \/ -. ps ) ) |
|
2 | nornot | |- ( -. ph <-> ( ph -\/ ph ) ) |
|
3 | nornot | |- ( -. ps <-> ( ps -\/ ps ) ) |
|
4 | 2 3 | orbi12i | |- ( ( -. ph \/ -. ps ) <-> ( ( ph -\/ ph ) \/ ( ps -\/ ps ) ) ) |
5 | 1 4 | xchbinx | |- ( ( ph /\ ps ) <-> -. ( ( ph -\/ ph ) \/ ( ps -\/ ps ) ) ) |
6 | df-nor | |- ( ( ( ph -\/ ph ) -\/ ( ps -\/ ps ) ) <-> -. ( ( ph -\/ ph ) \/ ( ps -\/ ps ) ) ) |
|
7 | 5 6 | bitr4i | |- ( ( ph /\ ps ) <-> ( ( ph -\/ ph ) -\/ ( ps -\/ ps ) ) ) |