Metamath Proof Explorer


Theorem noran

Description: /\ is expressible via -\/ . (Contributed by Remi, 26-Oct-2023) (Proof shortened by Wolf Lammen, 8-Dec-2023)

Ref Expression
Assertion noran ( ( 𝜑𝜓 ) ↔ ( ( 𝜑 𝜑 ) ( 𝜓 𝜓 ) ) )

Proof

Step Hyp Ref Expression
1 anor ( ( 𝜑𝜓 ) ↔ ¬ ( ¬ 𝜑 ∨ ¬ 𝜓 ) )
2 nornot ( ¬ 𝜑 ↔ ( 𝜑 𝜑 ) )
3 nornot ( ¬ 𝜓 ↔ ( 𝜓 𝜓 ) )
4 2 3 orbi12i ( ( ¬ 𝜑 ∨ ¬ 𝜓 ) ↔ ( ( 𝜑 𝜑 ) ∨ ( 𝜓 𝜓 ) ) )
5 1 4 xchbinx ( ( 𝜑𝜓 ) ↔ ¬ ( ( 𝜑 𝜑 ) ∨ ( 𝜓 𝜓 ) ) )
6 df-nor ( ( ( 𝜑 𝜑 ) ( 𝜓 𝜓 ) ) ↔ ¬ ( ( 𝜑 𝜑 ) ∨ ( 𝜓 𝜓 ) ) )
7 5 6 bitr4i ( ( 𝜑𝜓 ) ↔ ( ( 𝜑 𝜑 ) ( 𝜓 𝜓 ) ) )