Description: /\ is expressible via -\/ . (Contributed by Remi, 26-Oct-2023) (Proof shortened by Wolf Lammen, 8-Dec-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | noran | ⊢ ( ( 𝜑 ∧ 𝜓 ) ↔ ( ( 𝜑 ⊽ 𝜑 ) ⊽ ( 𝜓 ⊽ 𝜓 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anor | ⊢ ( ( 𝜑 ∧ 𝜓 ) ↔ ¬ ( ¬ 𝜑 ∨ ¬ 𝜓 ) ) | |
2 | nornot | ⊢ ( ¬ 𝜑 ↔ ( 𝜑 ⊽ 𝜑 ) ) | |
3 | nornot | ⊢ ( ¬ 𝜓 ↔ ( 𝜓 ⊽ 𝜓 ) ) | |
4 | 2 3 | orbi12i | ⊢ ( ( ¬ 𝜑 ∨ ¬ 𝜓 ) ↔ ( ( 𝜑 ⊽ 𝜑 ) ∨ ( 𝜓 ⊽ 𝜓 ) ) ) |
5 | 1 4 | xchbinx | ⊢ ( ( 𝜑 ∧ 𝜓 ) ↔ ¬ ( ( 𝜑 ⊽ 𝜑 ) ∨ ( 𝜓 ⊽ 𝜓 ) ) ) |
6 | df-nor | ⊢ ( ( ( 𝜑 ⊽ 𝜑 ) ⊽ ( 𝜓 ⊽ 𝜓 ) ) ↔ ¬ ( ( 𝜑 ⊽ 𝜑 ) ∨ ( 𝜓 ⊽ 𝜓 ) ) ) | |
7 | 5 6 | bitr4i | ⊢ ( ( 𝜑 ∧ 𝜓 ) ↔ ( ( 𝜑 ⊽ 𝜑 ) ⊽ ( 𝜓 ⊽ 𝜓 ) ) ) |