Step |
Hyp |
Ref |
Expression |
1 |
|
ianor |
⊢ ( ¬ ( 𝜑 ∧ 𝜓 ) ↔ ( ¬ 𝜑 ∨ ¬ 𝜓 ) ) |
2 |
1
|
notbii |
⊢ ( ¬ ¬ ( 𝜑 ∧ 𝜓 ) ↔ ¬ ( ¬ 𝜑 ∨ ¬ 𝜓 ) ) |
3 |
|
nornot |
⊢ ( ¬ 𝜑 ↔ ( 𝜑 ⊽ 𝜑 ) ) |
4 |
|
nornot |
⊢ ( ¬ 𝜓 ↔ ( 𝜓 ⊽ 𝜓 ) ) |
5 |
3 4
|
orbi12i |
⊢ ( ( ¬ 𝜑 ∨ ¬ 𝜓 ) ↔ ( ( 𝜑 ⊽ 𝜑 ) ∨ ( 𝜓 ⊽ 𝜓 ) ) ) |
6 |
5
|
notbii |
⊢ ( ¬ ( ¬ 𝜑 ∨ ¬ 𝜓 ) ↔ ¬ ( ( 𝜑 ⊽ 𝜑 ) ∨ ( 𝜓 ⊽ 𝜓 ) ) ) |
7 |
|
ioran |
⊢ ( ¬ ( ( 𝜑 ⊽ 𝜑 ) ∨ ( 𝜓 ⊽ 𝜓 ) ) ↔ ( ¬ ( 𝜑 ⊽ 𝜑 ) ∧ ¬ ( 𝜓 ⊽ 𝜓 ) ) ) |
8 |
2 6 7
|
3bitrri |
⊢ ( ( ¬ ( 𝜑 ⊽ 𝜑 ) ∧ ¬ ( 𝜓 ⊽ 𝜓 ) ) ↔ ¬ ¬ ( 𝜑 ∧ 𝜓 ) ) |
9 |
|
df-nor |
⊢ ( ( ( 𝜑 ⊽ 𝜑 ) ⊽ ( 𝜓 ⊽ 𝜓 ) ) ↔ ¬ ( ( 𝜑 ⊽ 𝜑 ) ∨ ( 𝜓 ⊽ 𝜓 ) ) ) |
10 |
9 7
|
bitri |
⊢ ( ( ( 𝜑 ⊽ 𝜑 ) ⊽ ( 𝜓 ⊽ 𝜓 ) ) ↔ ( ¬ ( 𝜑 ⊽ 𝜑 ) ∧ ¬ ( 𝜓 ⊽ 𝜓 ) ) ) |
11 |
|
notnotb |
⊢ ( ( 𝜑 ∧ 𝜓 ) ↔ ¬ ¬ ( 𝜑 ∧ 𝜓 ) ) |
12 |
8 10 11
|
3bitr4ri |
⊢ ( ( 𝜑 ∧ 𝜓 ) ↔ ( ( 𝜑 ⊽ 𝜑 ) ⊽ ( 𝜓 ⊽ 𝜓 ) ) ) |