Metamath Proof Explorer


Theorem orbi12i

Description: Infer the disjunction of two equivalences. (Contributed by NM, 3-Jan-1993)

Ref Expression
Hypotheses orbi12i.1 ( 𝜑𝜓 )
orbi12i.2 ( 𝜒𝜃 )
Assertion orbi12i ( ( 𝜑𝜒 ) ↔ ( 𝜓𝜃 ) )

Proof

Step Hyp Ref Expression
1 orbi12i.1 ( 𝜑𝜓 )
2 orbi12i.2 ( 𝜒𝜃 )
3 2 orbi2i ( ( 𝜑𝜒 ) ↔ ( 𝜑𝜃 ) )
4 1 orbi1i ( ( 𝜑𝜃 ) ↔ ( 𝜓𝜃 ) )
5 3 4 bitri ( ( 𝜑𝜒 ) ↔ ( 𝜓𝜃 ) )