Metamath Proof Explorer


Theorem noranOLD

Description: Obsolete version of noran as of 8-Dec-2023. (Contributed by Remi, 26-Oct-2023) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion noranOLD φ ψ φ φ ψ ψ

Proof

Step Hyp Ref Expression
1 ianor ¬ φ ψ ¬ φ ¬ ψ
2 1 notbii ¬ ¬ φ ψ ¬ ¬ φ ¬ ψ
3 nornot ¬ φ φ φ
4 nornot ¬ ψ ψ ψ
5 3 4 orbi12i ¬ φ ¬ ψ φ φ ψ ψ
6 5 notbii ¬ ¬ φ ¬ ψ ¬ φ φ ψ ψ
7 ioran ¬ φ φ ψ ψ ¬ φ φ ¬ ψ ψ
8 2 6 7 3bitrri ¬ φ φ ¬ ψ ψ ¬ ¬ φ ψ
9 df-nor φ φ ψ ψ ¬ φ φ ψ ψ
10 9 7 bitri φ φ ψ ψ ¬ φ φ ¬ ψ ψ
11 notnotb φ ψ ¬ ¬ φ ψ
12 8 10 11 3bitr4ri φ ψ φ φ ψ ψ