Metamath Proof Explorer


Theorem noran

Description: /\ is expressible via -\/ . (Contributed by Remi, 26-Oct-2023) (Proof shortened by Wolf Lammen, 8-Dec-2023)

Ref Expression
Assertion noran φ ψ φ φ ψ ψ

Proof

Step Hyp Ref Expression
1 anor φ ψ ¬ ¬ φ ¬ ψ
2 nornot ¬ φ φ φ
3 nornot ¬ ψ ψ ψ
4 2 3 orbi12i ¬ φ ¬ ψ φ φ ψ ψ
5 1 4 xchbinx φ ψ ¬ φ φ ψ ψ
6 df-nor φ φ ψ ψ ¬ φ φ ψ ψ
7 5 6 bitr4i φ ψ φ φ ψ ψ