Metamath Proof Explorer


Theorem noranOLD

Description: Obsolete version of noran as of 8-Dec-2023. (Contributed by Remi, 26-Oct-2023) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion noranOLD
|- ( ( ph /\ ps ) <-> ( ( ph -\/ ph ) -\/ ( ps -\/ ps ) ) )

Proof

Step Hyp Ref Expression
1 ianor
 |-  ( -. ( ph /\ ps ) <-> ( -. ph \/ -. ps ) )
2 1 notbii
 |-  ( -. -. ( ph /\ ps ) <-> -. ( -. ph \/ -. ps ) )
3 nornot
 |-  ( -. ph <-> ( ph -\/ ph ) )
4 nornot
 |-  ( -. ps <-> ( ps -\/ ps ) )
5 3 4 orbi12i
 |-  ( ( -. ph \/ -. ps ) <-> ( ( ph -\/ ph ) \/ ( ps -\/ ps ) ) )
6 5 notbii
 |-  ( -. ( -. ph \/ -. ps ) <-> -. ( ( ph -\/ ph ) \/ ( ps -\/ ps ) ) )
7 ioran
 |-  ( -. ( ( ph -\/ ph ) \/ ( ps -\/ ps ) ) <-> ( -. ( ph -\/ ph ) /\ -. ( ps -\/ ps ) ) )
8 2 6 7 3bitrri
 |-  ( ( -. ( ph -\/ ph ) /\ -. ( ps -\/ ps ) ) <-> -. -. ( ph /\ ps ) )
9 df-nor
 |-  ( ( ( ph -\/ ph ) -\/ ( ps -\/ ps ) ) <-> -. ( ( ph -\/ ph ) \/ ( ps -\/ ps ) ) )
10 9 7 bitri
 |-  ( ( ( ph -\/ ph ) -\/ ( ps -\/ ps ) ) <-> ( -. ( ph -\/ ph ) /\ -. ( ps -\/ ps ) ) )
11 notnotb
 |-  ( ( ph /\ ps ) <-> -. -. ( ph /\ ps ) )
12 8 10 11 3bitr4ri
 |-  ( ( ph /\ ps ) <-> ( ( ph -\/ ph ) -\/ ( ps -\/ ps ) ) )