Metamath Proof Explorer


Theorem noror

Description: \/ is expressible via -\/ . (Contributed by Remi, 26-Oct-2023) (Proof shortened by Wolf Lammen, 8-Dec-2023)

Ref Expression
Assertion noror
|- ( ( ph \/ ps ) <-> ( ( ph -\/ ps ) -\/ ( ph -\/ ps ) ) )

Proof

Step Hyp Ref Expression
1 df-nor
 |-  ( ( ph -\/ ps ) <-> -. ( ph \/ ps ) )
2 1 con2bii
 |-  ( ( ph \/ ps ) <-> -. ( ph -\/ ps ) )
3 nornot
 |-  ( -. ( ph -\/ ps ) <-> ( ( ph -\/ ps ) -\/ ( ph -\/ ps ) ) )
4 2 3 bitri
 |-  ( ( ph \/ ps ) <-> ( ( ph -\/ ps ) -\/ ( ph -\/ ps ) ) )