Description: \/ is expressible via -\/ . (Contributed by Remi, 26-Oct-2023) (Proof shortened by Wolf Lammen, 8-Dec-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | noror | |- ( ( ph \/ ps ) <-> ( ( ph -\/ ps ) -\/ ( ph -\/ ps ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-nor | |- ( ( ph -\/ ps ) <-> -. ( ph \/ ps ) ) | |
| 2 | 1 | con2bii | |- ( ( ph \/ ps ) <-> -. ( ph -\/ ps ) ) | 
| 3 | nornot | |- ( -. ( ph -\/ ps ) <-> ( ( ph -\/ ps ) -\/ ( ph -\/ ps ) ) ) | |
| 4 | 2 3 | bitri | |- ( ( ph \/ ps ) <-> ( ( ph -\/ ps ) -\/ ( ph -\/ ps ) ) ) |