Metamath Proof Explorer


Theorem norasslem1

Description: This lemma shows the equivalence of two expressions, used in norass . (Contributed by Wolf Lammen, 18-Dec-2023)

Ref Expression
Assertion norasslem1
|- ( ( ( ph \/ ps ) -> ch ) <-> ( ( ph -\/ ps ) \/ ch ) )

Proof

Step Hyp Ref Expression
1 imor
 |-  ( ( ( ph \/ ps ) -> ch ) <-> ( -. ( ph \/ ps ) \/ ch ) )
2 df-nor
 |-  ( ( ph -\/ ps ) <-> -. ( ph \/ ps ) )
3 2 orbi1i
 |-  ( ( ( ph -\/ ps ) \/ ch ) <-> ( -. ( ph \/ ps ) \/ ch ) )
4 1 3 bitr4i
 |-  ( ( ( ph \/ ps ) -> ch ) <-> ( ( ph -\/ ps ) \/ ch ) )