Description: This lemma shows the equivalence of two expressions, used in norass . (Contributed by Wolf Lammen, 18-Dec-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | norasslem1 | |- ( ( ( ph \/ ps ) -> ch ) <-> ( ( ph -\/ ps ) \/ ch ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | imor | |- ( ( ( ph \/ ps ) -> ch ) <-> ( -. ( ph \/ ps ) \/ ch ) ) | |
| 2 | df-nor | |- ( ( ph -\/ ps ) <-> -. ( ph \/ ps ) ) | |
| 3 | 2 | orbi1i | |- ( ( ( ph -\/ ps ) \/ ch ) <-> ( -. ( ph \/ ps ) \/ ch ) ) | 
| 4 | 1 3 | bitr4i | |- ( ( ( ph \/ ps ) -> ch ) <-> ( ( ph -\/ ps ) \/ ch ) ) |