Description: This lemma shows the equivalence of two expressions, used in norass . (Contributed by Wolf Lammen, 18-Dec-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | norasslem1 | |- ( ( ( ph \/ ps ) -> ch ) <-> ( ( ph -\/ ps ) \/ ch ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imor | |- ( ( ( ph \/ ps ) -> ch ) <-> ( -. ( ph \/ ps ) \/ ch ) ) |
|
2 | df-nor | |- ( ( ph -\/ ps ) <-> -. ( ph \/ ps ) ) |
|
3 | 2 | orbi1i | |- ( ( ( ph -\/ ps ) \/ ch ) <-> ( -. ( ph \/ ps ) \/ ch ) ) |
4 | 1 3 | bitr4i | |- ( ( ( ph \/ ps ) -> ch ) <-> ( ( ph -\/ ps ) \/ ch ) ) |