Metamath Proof Explorer


Theorem orbi1i

Description: Inference adding a right disjunct to both sides of a logical equivalence. (Contributed by NM, 3-Jan-1993)

Ref Expression
Hypothesis orbi2i.1
|- ( ph <-> ps )
Assertion orbi1i
|- ( ( ph \/ ch ) <-> ( ps \/ ch ) )

Proof

Step Hyp Ref Expression
1 orbi2i.1
 |-  ( ph <-> ps )
2 orcom
 |-  ( ( ph \/ ch ) <-> ( ch \/ ph ) )
3 1 orbi2i
 |-  ( ( ch \/ ph ) <-> ( ch \/ ps ) )
4 orcom
 |-  ( ( ch \/ ps ) <-> ( ps \/ ch ) )
5 2 3 4 3bitri
 |-  ( ( ph \/ ch ) <-> ( ps \/ ch ) )