Metamath Proof Explorer


Theorem orcom

Description: Commutative law for disjunction. Theorem *4.31 of WhiteheadRussell p. 118. (Contributed by NM, 3-Jan-1993) (Proof shortened by Wolf Lammen, 15-Nov-2012)

Ref Expression
Assertion orcom
|- ( ( ph \/ ps ) <-> ( ps \/ ph ) )

Proof

Step Hyp Ref Expression
1 pm1.4
 |-  ( ( ph \/ ps ) -> ( ps \/ ph ) )
2 pm1.4
 |-  ( ( ps \/ ph ) -> ( ph \/ ps ) )
3 1 2 impbii
 |-  ( ( ph \/ ps ) <-> ( ps \/ ph ) )