Metamath Proof Explorer


Theorem orcomd

Description: Commutation of disjuncts in consequent. (Contributed by NM, 2-Dec-2010)

Ref Expression
Hypothesis orcomd.1
|- ( ph -> ( ps \/ ch ) )
Assertion orcomd
|- ( ph -> ( ch \/ ps ) )

Proof

Step Hyp Ref Expression
1 orcomd.1
 |-  ( ph -> ( ps \/ ch ) )
2 orcom
 |-  ( ( ps \/ ch ) <-> ( ch \/ ps ) )
3 1 2 sylib
 |-  ( ph -> ( ch \/ ps ) )